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Abstract—We consider the all-pairs multicommodity network flow problem on a network with
capacitated edges. The usual treatment keeps track of a separate flow for each source-destination
pair on each edge; we rely on a more efficient formulation in which flows with the same des-
tination are aggregated, reducing the number of variables by a factor equal to the size of the
network. Problems with hundreds of nodes, with a total number of variables on the order of
a million, can be solved using standard generic interior-point methods on CPUs; we focus on
GPU-compatible algorithms that can solve such problems much faster, and in addition scale
to much larger problems, with up to a billion variables. Our method relies on the primal-dual
hybrid gradient algorithm, and exploits several specific features of the problem for efficient GPU
computation. Numerical experiments show that our primal-dual multicommodity network flow
method accelerates state-of-the-art generic commercial solvers by 100 to 1000 times, and scales
to problems that are much larger. We provide an open-source implementation of our method.
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1. MULTICOMMODITY NETWORK FLOW OPTIMIZATION
1.1. Multicommodity Network Flow Problem

Our formulation of the multicommodity network flow (MCF) problem, given below, follows [1].

Network. We consider a directed network with n nodes and m edges which is completely connected,
i.e., there is a directed path between each pair of nodes. Let A € R™*™ denote its incidence matrix,
i.e.,
+1 edge ¢ enters node ¢
Ay =< —1 edge ¢ leaves node ¢
0 otherwise.

Edge ¢ has a positive capacity ¢,. The total flow on edge ¢ (to be defined below) cannot exceed c.

Traffic matrix. We consider the all-pairs multicommodity flow setting, i.e., there is traffic that
originates at every node, destined for every other node. We characterize the traffic between all
source-destination pairs via the traffic matrix 7" € R™*". For any pair of distinct nodes i, j, Tj; > 0
is the traffic from (source) node j to (destination) node i. There is no traffic from a node to itself;
for mathematical convenience we define the diagonal traffic matrix entries as T;; = — Zj# T;j, the
negative of the total traffic with destination node i. With this definition of the diagonal entries,
we have T'1 = 0, where 1 is the vector with all entries one.

Network utility. Let u;; denote the strictly concave increasing utility function for traffic from
node j to node i, for j # i. We will assume utility functions are differentiable with domains R,
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the set of positive numbers. (The methods we describe are readily extended to nondifferentiable
utilities using subgradients instead of gradients.) The total utility, which we wish to maximize, is
Dit ui;(Ti;). For simplicity we take u;; = 0, so we can write the total utility as

U(T) = 3 ui(Ty)-

The domain of U is T = {T" | T;; > 0 for i # j}, i.e., the traffic matrix must have positive off-
diagonal entries.

Common examples of utility functions include the weighted log utility u(s) = wlogs, and the
weighted power utility u(s) = ws?, with v € (0,1), where w > 0 is the weight.
Destination-based flow matrix. Following [1] we aggregate all flows with the same destination,
considering it to be one commodity that is conserved at all nodes except the source and destination,
but can be split and combined. The commodity flows are given by the (destination-based) flow
matrix F' € R"*™ where Fj; > 0 denotes the flow on edge ¢ that is destined to node i. The edge
capacity constraint can be expressed as FT1 < ¢, where the inequality is elementwise. A similar
flow aggregation formulation, though source-based, was considered in [2].
Flow conservation. The flow destined for node i is conserved at all nodes j # i, including the
additional injection of traffic Tj; that originates at node j and is destined for node ¢. This means
that

Tij+ > AjpFu=0, i,j=1,....,n, j#i.
V4
At the destination node, all traffic exits and we have (using our definition of Tj;)

T+ Y AuFi =0, i=1,....n.
l

Combining these two, and using our specific definition of T;;, flow conservation can be compactly
written in matrix notation as
T+ FAT =0.

Multicommodity flow problem. In the MCF problem, we seek a flow matrix that maximizes to-
tal network utility, subject to the edge capacity and flow conservation constraints. This can be
expressed as the problem

maximize U(T) (1)
subject to FF >0, FT1<e¢, T+ FAT =0,

with variables F' and T', and implicit constraint 7' € 7. The problem data are the network topol-
ogy A, edge capacities ¢, and the traffic utility functions u;;.
We can eliminate the traffic matrix 7 using T = —F AT and state the MCF problem in terms

of the variable F' alone as
maximize U(—FAT) @)
subject to F >0, FT1<e¢,

with variable F, and implicit constraint —F AT € 7. The number of scalar variables in this problem
is nm. For future use, we define the feasible flow set as

F={F|F>0, F'1<¢}.

Existence and uniqueness of solution. First, let us show the MCF problem (1) is always feasible.
Consider a unit flow from each source to each destination, over the shortest path, i.e., the smallest
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number of edges, which exists since the graph is completely connected. We denote this flow matrix
as F°. Now take F = aF*?, where a = 1/ max,((F*71),/c;) > 0, so we have FT1 < c. Evidently
F' is feasible, and we have T;; = a > 0 for i # j, so T' = —F AT ¢ T. This shows that the problem
is always feasible. Let UP denote the corresponding objective function.

We can add the constraint U(T) > U®P to the problem, without changing the solution set. With

this addition, the feasible set is compact. It follows that the MCF problem (1) always has a
solution. The solution need not be unique. The optimal 7', however, is unique. We also note that
the argument above tells us that the implicit constraint 7' = —F AT € T is redundant.
Solving MCF. The multicommodity flow problem (2) is convex [3], and so can be efficiently solved
in principle. In [1] the authors use standard generic interior-point solvers such as commercial solver
MOSEK [4], together with CVXPY [5], to solve instances of the problem with tens of nodes, and
thousands of variables, in a few seconds on a CPU. In this paper, we introduce an algorithm for
solving the MCF problem that fully exploits GPUs. For small and medium size problems, our
method gives a substantial speedup over generic methods; in addition, it scales to much larger
problems that cannot be solved by generic methods.

1.2. Optimality Condition and Residual
Optimality condition. Let F denote the closure of the feasible set, including the implicit constraint
T=-FAT T, i
F=Fn{F|-FA" c (T},
where cl(7") denotes the closure of 7.
Then F is optimal for (2) if and only if F € F, —FAT € T, and

Tr(Z - F)'G >0

holds for all Z € F, where G = Vp(—U)(—FAT) (see, e.g., [3, §4.2.3]). We have G = U’A, where
U =y (—FAT) ).

Optimality condition via projection onto . For future use, we express the above optimality con-
dition in terms of projection of a matrix ) onto F. Let II denote Euclidean projection onto F.
Suppose Q € R™ ™, and set F =1II(Q), so F € F. Suppose in addition that —F A" € T, so that
G = Vr((~U)(—FAT) exists. Then F is also Euclidean projection of Q onto F. It follows that
Tr(Z — F)'G >0 for all Z ¢ F, so the optimality condition above holds, and F is optimal. Evi-
dently, it would hold if the weaker condition

G =~(F — Q) for some v >0

holds.

Summarizing: F is optimal if F' = II(Q) for some Q, —FAT € T, and G = v(F — Q) for some
7 = 0. The converse is also true: If F' is optimal then F = II(Q) for some @ with —F AT € T and
G =~(F — Q) for some v > 0. (Indeed, this holds with vy =1 and @ = F — G.) This optimality
condition is readily interpreted: It states that F' is a fixed point of a projected gradient step with
step size 7.
Optimality residual. For any @ € R™"™ with F' = II(Q), we define the (optimality) residual as

r(Q) = { minyo |G —y(F - Q) —FA" €T

%) otherwise,

where || - [|2 denotes the squared Frobenius norm of a matrix, i.e., the sum of squares of its
entries. When —F AT € T, the righthand side is a quadratic function of 7, so the minimum is
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easily expressed explicitly as

., TGT(F-Q)

1G] % s —FAT €T, F#Q, TrG"(F-Q) >0

r(Q) = IF' = Q% (3)
1G% ~FAT ¢ T, F=Qor TrGT(F-Q) <0
) otherwise.

Evidently F' = II(Q) is optimal if and only if 7(Q) = 0.

1.3. Related Work

Multicommodity network flow. Historically, different forms of MCF problems have been for-
mulated and studied. Starting from [6, 7] which studied a version with linear utility functions,
which can be formulated as a linear program, later works develop nonlinear convex program
formulations [8, 9] and (nonconvex) mixed integer program formulations [10-12] of MCF prob-
lems for different application purposes. These various forms of MCF have been widely used in
transportation management [13-15], energy and economic sectors [8, 10, 16], and network com-
munication [11, 17, 18]. [19] surveys over two hundred studies on MCF problems between 2000
and 2019. In this work, we focus on nonlinear convex formulation of MCF problems and develop
GPU-compatible algorithms for solving large problem instances. See [20] for a survey on nonlinear
convex MCF problems. MCF models have very recently been exploited to design multi-GPU com-
munication schedules for deep learning tasks [21, 22], but the underlying MCF problems are solved
with CPU-based solvers.

First-order methods for convex optimization. First-order methods such as gradient descent al-
gorithm, proximal point algorithm, primal-dual hybrid gradient algorithm, and their accelerated
versions have been exploited to tackle different forms of convex optimization problems. Compared
to second-order methods which exploit Hessian information, first-order methods are known for
their low computational complexity and are thus attractive for solving large-scale optimization
problems. Recently, primal-dual hybrid gradient algorithm has been explored for solving large
linear programs [23-25] and optimal transport problems [26] on GPUs. Other first-order methods
such as ADMM have been exploited for designing GPU-accelerated optimizers for optimal power
flow problems [27, 28].

GPU-accelerated network flow optimization. Specialized to GPU-based optimizers for network
flow optimization, [29] considers implementing a parallel routing algorithm on GPUs for SDN
networks, which solves the Lagrangian relaxation of a mixed integer linear program. [30] imple-
ments a genetic method on GPUs for solving an integer linear program formulation of the routing
problem. [31] considers a linear program formulation of multicommodity network flow problems
and constructs a deep learning model for generating new columns in delayed column generation
method. [32] implements an asynchronous push-relabel algorithm for single commodity maximum
network flow problem, which is CPU-GPU hybrid. [33] exploits exactly the same flow aggregation
formulation of MCF following [1] as we do and trains a neural network model for minimizing un-
constrained Lagrangian relaxation objective, and feeds the result as warm start to Gurobi [34] to
get the final answer. [35] integrates a source-based flow aggregation formulation of the multicom-
modity flow problem into solving the combined transportation model and exploits an accelerated
variant of proximal alternating predictor-corrector algorithm. The authors claim that the proposed
algorithm is GPU-friendly, but the numerical experiments are CPU-based, and involve small size
networks. [36] adopts a primal-dual gradient method for solving combined traffic models, which
however is not GPU-oriented.
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1.4. Contribution

Motivated by the recent advancement of GPU optimizers, in this work we seek to accelerate
large-scale nonlinear convex MCF problem solving with GPUs. Specifically, we adopt the MCF
problem formulation in [1] (also described above) which is compactly matrix-represented and re-
quires fewer optimization variables by exploiting flow aggregation. We show that this specific
problem formulation can be efficiently solved with first-order primal-dual hybrid gradient method
when run on GPUs.

To the best of our knowledge, our work is the first to tackle exactly solving convex MCF prob-
lems on GPUs. Classic works for solving such large-scale MCF problems usually adopt Lagrangian
relaxation for the coupling constraint and solve the resulting subproblems with smaller sizes in
parallel (see, e.g., [20]). In our work, we do not exploit any explicit problem decomposition strat-
egy and our algorithmic acceleration is mainly empirical and depends on highly-optimized CUDA
kernels for matrix operations. Moreover, we achieve problem size reduction via flow aggregation.
Therefore, our method has a simpler form that does not involve massive subproblem solving and
synchronizing, and is also exact.

1.5. Outline

We describe our algorithm in §2. Experimental results, using our PyTorch implementation, are
presented and discussed in §3; very similar results obtained with our JAX implementation are given
in Appendix B. We conclude our work in §4. The code, and all data needed to reproduce the results
reported in this paper, can be accessed at https://github.com/cvxgrp/pdmct.

2. PRIMAL-DUAL HYBRID GRADIENT
2.1. Primal-Dual Saddle Point Formulation

We first derive a primal-dual saddle point formulation of the MCF problem (1). Let Z denote
the indicator function of F, ie., Z(F) =0 for F € F and Z(F) = oo otherwise. We switch to
minimizing —U in (1) to obtain the equivalent problem

minimize —U(T)+ Z(F)

4
subject to T = —FAT, 4)

with variables T" and F. We introduce a dual variable Y € R"*" associated with the (matrix)
equality constraint. Then the Lagrangian is

L(T,F;Y)=-U(T)+Z(F) - TrYI(T + FAT)

(see [3, Chap. 5]). The Lagrangian £ is convex in the primal variables (T, F) and affine (and
therefore concave) in the dual variable Y. If (T, F;Y) is a saddle point of £, then (T, F) is a
solution to problem (4) (and F'is a solution to the MCF problem (2)); the converse also holds.

We can analytically minimize £ over T' to obtain the reduced Lagrangian
L(FY) = inf L(T, F;Y) = —(=U)"(Y) + Z(F) — Tr YTFAT, (5)

where U* is the conjugate function of U [3, §3.3]. This reduced Lagrangian is convex in the primal
variable F' and concave in the dual variable Y. If (F;Y) is a saddle point of L, then F is a solution
to the MCF problem (2) (see [37, § 1]). We observe that £ is convex-concave, with a bilinear
coupling term.
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2.2. Basic PDHG Method

The primal-dual hybrid gradient (PDHG) algorithm, as first introduced in [38] and later studied
in [39, 40], is a first-order method for finding a saddle point of a convex-concave function with
bilinear coupling term. The algorithm was extended to include over-relaxation in [40, §4.1], which
has been observed to improve convergence in practice. For (5), PDHG has the form

FF+1/2 — prox, (F*1/% 4 aY* A)
PR+l — g pk+1/2 _ pk—1/2

YR = ProXg(_)- (Y* — gEFHiAT) (6)
FRHLZ _ pfRe1/2 (1— p)Fk—1/2
Yk-‘rl — ka+1 + (1 o p)Yk

where prox (v) = argmin, (f(z)+ (1/2)|| — v||3) denotes the proximal operator of f [41], a, 3 > 0
are positive step sizes satisfying a8 < 1/||A||3, and p € (0,2) is the over-relaxation parameter.
Reasonable choices for the parameters are

a=p=1/Alz,  p=19.

(An upper bound on ||A|2 can be used in place of ||A]2.)

Convergence. In [40] it has been shown that when there exists a saddle point of L, (F*;Y*) con-
verges to a saddle point of L as k — oo. For MCF the existence of an optimal flow matrix and dual
variable is known, so F*¥ converges to an optimal flow matrix. It follows that r(F*¥~1/2 + aY*A) — 0
as k — oo. We note that —F AT € T only holds eventually.

2.8. Proximal Operators

Here we take a closer look at the two proximal operators appearing in PDHG.

First proximal operator. We note that prox,; appearing in the Fk+1/2 update of (6) is projection
onto F,

pI‘OXQI(F) = H(F)
Since the constraints that define F separate across the columns of F', we can compute II(F) by

projecting each column f; of F onto the scaled simplex Sy = {f | f > 0, 17 f < ¢,}. This projection
has the form

s, (fe) = (fe — )+,

where py is the optimal Lagrange multiplier and (a)y = max{a, 0}, which is applied elementwise
to a vector. The optimal py is the smallest nonnegative value for which (f; — /,Lgl)JTrl < ¢p. This is
readily found by a bisection algorithm; see §2.6.

Second proximal operator. The proximal operator appearing in the Ykl update step in (6) can
be decomposed entrywise, since 5(—U)* is a sum of functions of different variables. (The diagonal
entries —u;; are zero, so (—fu;;)* is the indicator function of {0}, and its proximal operator is the
zero function.) For each off-diagonal entry i # j we need to evaluate

proxﬁ(—uij)* (y) °

These one-dimensional proximal operators are readily computed in the general case. For the
weighted log utility u(s) = wlogs, we have

y — Vy*+4bw
5 :
AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025
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For the weighted power utility u(s) = ws?, proxg_,,«(y) is the unique negative number z for which
(=) +y(=2) T —crep =0,

where

1
01:L>0, @zﬁ(——l)(wy)liw > 0.
Y

2.4. Adaptive Step Sizes

In the basic PDHG algorithm (6), the step sizes o and (3 are fixed. It has been observed that
varying them adaptively as the algorithm runs can improve practical convergence substantially [23].
We describe our implementation of adaptive step sizes here.

We express the step sizes as

where 1 < 1/||Al]2 and w* > 0 gives the primal weight. With w* = 1 we obtain basic PDHG (6).
The primal weight w* is initialized as w® = 1 and adapted following [23, §3.3] as

k+1
AF

where ARFE = ||FE+H1/2 — k=172 AFFL — || YR+ — VE||p and 0 is a parameter fixed as 0.5 in
our implementation. The intuition behind the primal weight update (7) is to balance the primal
and dual residuals; see [23, §3.3] for details. In [23] the authors update w each restart. We do not
use restarts, and have found that updating w* every k24Pt iterations, when both A% > 107% and
A’{, > 10~° hold, works well in practice for MCF. In our experiments, we use k2Pt =100. We
can also stop adapting w”* after some number of iterations, keeping it constant in future iterations.
At least technically this implies that the convergence proof for constant w holds for the adaptive
algorithm.

A simple bound on || A||2. We can readily compute a simple upper bound on

HA||2 =V /\maX(AAT)a

where Apax denotes the maximum eigenvalue. We observe that AA”T is the Laplacian matrix
associated with the network, for which the well-known bound

Amax (AAT) < 2dpax

holds, where d.x is the largest node degree in the graph. (For completeness we derive this in
Appendix A.) Thus we can take

N =1/v2dmnax- (8)

2.5. Algorithm

We summarize our final algorithm, which we call PDMCF. We set 0 = 400, o’ = n/w’, and
B = nw, where 7 is given in (8) and w® = 1.
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Algorithm 2.1. PDMCF
given F~12 y0 parameter € > 0.
for k=0,1,...
1. Check stopping criterion. Quit and return F*~1/2 if r* < nme holds.
2. Basic PDHG updates (6).
Fk—l—l/Q — H(Fk—l/Q + O[kYkA)
Fk—l—l — 2Fk+1/2 . Fk_l/Q.
proxﬁk(_uij)*(Yi’]‘? — BR(FFIATY ) G #£1
0 j=1i.
Fht+1/2 ppk+1/2 +(1— p)Fk:—l/Q'
Yk:-l—l — pf/k’-i-l 4 (1 _ p)Yk
3. Adaptive step size updates (7) (if k is multiple of k24%P* and AIFFI, Agﬁ“ > 7).
6 1-6
Wkl — (A’;“/A]}’;H) (wk) .
aF = g fuht BRFL Z okt

k1
Th =

Initialization. We always take F~1/2 =0 and Y* =T —117. We can alternatively use a better
guess of F~Y2 and Y, for example in a warm start, when we have already solved a problem with
similar data. We illustrate more on this in §3.1.

Stopping criterion. Since F*+1/2 ig result of projection onto F, our optimality residual (3) has the

form
PRl r(Fk_l/Q 4 akYkA).

We consider the stopping criterion 7% < nme, i.e., the entrywise normalized residual 7*/nm is
smaller than a user-specified threshold e.

2.6. Implementation Details

Incidence matrix indexing. We only store the indices of the non-zero entries of A. Matrix multipli-
cation with A and A” can be efficiently computed by exploiting scatter and gather functions, which
are highly optimized CUDA kernels and are available in most major GPU computing languages.
Projection onto scaled simplex. To compute pp when ( fg)z]. > ¢y, we follow [42] and first sort f,
from largest entry to smallest entry to form f;. We then find the largest index ¢ such that
For = (Choi £ — ) /t) > 0. Finally we take pp = (35— f; — o)/t

Some recent work develops a more efficient method to compute the projection onto the simplex
set ([43, 44] for example); we adopt the simpler algorithm described above for implementation
simplicity.

3. EXPERIMENTS

We run all our experiments on a single H100 GPU with 80 Gb of memory supported by 26 virtual
CPU cores and 241 Gb of RAM. The results given below are for our PyTorch implementation;
similar results, reported in Appendix B, are obtained with our JAX implementation.

3.1. Examples

Data and parameters. We consider weighted log utilities of form w;;(T;;) = w;;log T;;. We take
log w;j to be uniform on [log0.3,log 3]. For network topology, we first create n two-dimensional
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data points &; € R?, each denoted by (&;z,&y) fori = 1,...,n. We take &, and &, uniform on [0, 1].
Then we add both edges (&;,&;) and (;,&;) when either &; is among the g-nearest neighbors of §;
or vice versa. For each edge ¢, we impose edge capacity ¢, where we take log ¢, to be uniform on
[log 0.5, log 5].

We use the stopping criterion threshold e = 0.01/(n(n — 1)) for small to medium size problems

and € = 0.03/(n(n — 1)) for large size problems. We compare to CPU-based commercial solver
MOSEK, with default settings. MOSEK is able to solve the problems with high accuracy; we have
checked that for all problem instances, the normalized utility differences between the results of
PDMCF and MOSEK are no more than around 0.01. The pairwise normalized (optimal) utilities
range between around 1 and 10, which means that PDMCF finds flows that are between 0.1%
and 1% suboptimal compared to the flows found by MOSEK.
Small to medium size problems. Table 1 shows runtime for both MOSEK and PDMCF required
to solve problem instances of various sizes. The column titled nm gives the number of scalar
optimization variables in the problem instance. We see that our implementation of PDMCF on a
GPU gives a speedup over MOSEK of 10 to 1000 times, with more significant speedup for larger
problem instances. We also report runtime for PDMCF when run on CPU, which is still quicker
than MOSEK but with a significantly lower speedup. Similar performance is also observed for our
JAX implementation, reported in Appendix B.

Table 1. Runtime table for small and medium size problems

problem sizes timing (s) . .
iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)

100 10 1178 1 x 105 5 1 0.5 490
200 10 2316 5 x 10° 23 2 0.7 690
300 10 3472 1 x 108 95 6 0.8 840
500 10 5738 3 x 108 340 18 1.1 950
500 20 11176 6 x 10° 1977 34 14 790
1000 10 11424 1 x 107 2889 1382 19.5 7220
1000 20 22286 2 x 107 16 765 349 5.1 1040

Large size problems. Table 2 shows runtime for several large problem instances. MOSEK fails to
solve all these problems due to memory limitations. PDMCEF handles all these problem instances,
with the largest one involving 10° variables.

Table 2. Runtime table for large size problems

problem sizes timing (s) ‘terations

n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1x 108 OOM 7056 96 4140
5000 10 57338 3 x 108 OOM 19152 395 3970
10000 10 114054 1 x 10° OOM 87490 1908 4380

Scaling. We scatter plot the runtime data for small and medium problem instances in Fig. 1. Here
we take 5 problem instances generated by iterating over random seeds {0, 1,2, 3,4} for the different
n,q values listed in Table 1. The x-axis represents optimization variable size nm and the y-axis
represents runtime in seconds. We plot on a log-log scale. The lines show the affine function fits
these data, with a slope around 1.5 for MOSEK and around 0.5 for PDMCEF.

Convergence plot. Figure 2 shows the convergence for three problem instances with variable sizes
10°,10%, and 10" with PDMCF, where the z-axis represents iteration numbers. Especially in the
initial iterations, we have infinite residual r* since —FA” & T. For those iterations, we plot the
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Fig. 1. Runtime plot for small and medium size problems.
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Fig. 2. Convergence plot for small and medium size problems.
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Fig. 3. Warm start plot for medium size problem.

fraction of nonpositive off-diagonal entries of T in blue. For feasible iterations, we plot the (finite)
residual, in red.

Warm start. In §2.5 we start with some simple initial F~/2 and Y°. We also test the performance
of PDMCF with warm starts. In Fig. 3 we present how runtime changes under different warm
starts. To form these warm starts, for some perturbation ratio v, we randomly perturb entries
of our utility weight matrix to derive w;; = (1 £ v)w;;, each with probability a half. We solve
the multicommodity network flow problem with perturbed utility weight @ with PDMCF until we
land at a feasible point (Ffas Yeas) gatisfying (—F*2AT),; > 0 for all distinct i,j. We record
the primal weight at this point as w. We then solve the desired multicommodity network flow
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problem with original utility weight w with F~1/2 = ffeas y0 — yfeas 55q ()0 = wfeas. We note
that setting w® = wf® is important for accelerated convergence, otherwise it usually requires a
similar number of iterations to converge as a cold start if we simply set w® = 1. In Fig. 3, we
take problem instance with n = 1000, ¢ = 10. z-axis stands for perturbation ratio v and y-axis
represents runtime in seconds. As can be observed, with perturbation ratio v = 10%, we harness
> 80% saving of runtime. Such savings keep decreasing to around 30% when v = 30%, which makes
sense given that larger perturbation indicates more different utility weights between the original
and perturbed problems, thus our warm start is expected to stay further from an optimal solution
to the original problem instance.

4. CONCLUSION

In this work, we present the PDMCF algorithm which accelerates solving multicommodity net-
work flow problems on GPUs. Our method starts with a destination-based formulation of multi-
commodity network flow problems which reduces optimization variable amount compared to classic
problem formulation. We then apply the PDHG algorithm to solve this destination-based problem
formulation. Empirical results verify that our algorithm is GPU-friendly and brings up to three
orders of magnitude of runtime acceleration compared to classic CPU-based commercial solvers.
Moreover, our algorithm is able to solve ten times larger problems than those that can be solved
by commercial CPU-based solvers.

APPENDIX A

Upper bound on A, (AAT). For a directed graph with incidence matrix A, d; = (AAT);; is the de-
gree of node ¢ and for ¢ # j, —(AAT),;j is the number of edges connecting node ¢ and node j, i.e., 2 if
both edges (i, ) and (j,7) exist. Note that Anax(AAT) = max),,—1 27 (AAT )z = max, - w.
We have

xT(AAT)J) = Z(AAT)“J)? + Z(AAT),;jaciacj
) i#]

i i#j

<D dix} + ) |(AAT)yjl(23 /2 + 27/2)
i i#]

= Z 2 (di + ) |(AAT);5)

J#i
%

< QdmaXxTac.

Therefore

/\max(AAT) — max M

< 2dpax-
) 2T X max

APPENDIX B

JAX results. The results shown in §3.1 are for our PyTorch implementation. Here we provide the
same results for our JAX implementation. Tables 3 and 4 show the runtimes on the same problem
instances as reported in Tables 1 and 2. We note that JAX’s just-in-time (JIT) compilation adds

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



SOLVING LARGE MULTICOMMODITY NETWORK FLOW PROBLEMS

Table 3. Runtime table for small and medium size problems (JAX)

problem sizes timing (s) . .
iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
100 10 1178 1 x 10° 5 12 5 490
200 10 2316 5 x 10° 23 57 6 690
300 10 3472 1 x 108 95 164 6 840
500 10 5738 3 x 106 340 548 7 950
500 20 11176 6 x 109 1977 890 8 790
1000 10 11424 1 x 107 2889 18 554 26 7150
1000 20 22286 2 x 107 16 765 5143 15 1040
Table 4. Runtime table for large size problems (JAX)
problem sizes timing (s) iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1 x 108 OOM 106 274 139 4140
5000 10 57338 3 x 108 OOM 382400 421 3970
10000 10 114054 1 x 10° OOM 1809517 2078 4380

runtime overhead for first-time function compilation and thus it does worse than its PyTorch
counterpart on small size problems. The runtimes of these two versions are close for medium and
large size problems, with JAX slightly slower.
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